4,394 research outputs found

    TGA/FTIR: An Extremely Useful Technique for Studying Polymer Degradation

    Get PDF
    Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy, TGA/FTIR, has been used to probe the degradation of several polymeric systems. These include poly(methyl methacrylate) in the presence of various additives, graft copolymers of acrylonitrile-butadiene-styrene and styrene-butadiene with sodium methacrylate and styrene with acrylonitrile, blends of styrene-butadiene block copolymers with poly(vinylphosphonic acid) and poly(vinylsulfonic acid), and cross-linked polystyrenes. Additives may interact with poly(methyl methacrylate) by coordination to the carbonyl oxygen to a Lewis acid and the subsequent transfer of an electron from the polymer chain to the metal atom or by the formation of a radical which can trap the degrading radicals before they can undergo further degradation. When an inorganic char-former is graft copolymerized onto a polymer, there is a good correlation between TGA behavior in an inert atmosphere and thermal stability in air, but this is not true when the char is largely carbonific

    An Introduction to the Use of Fillers and Nanocomposites in Fire Retardancy

    Get PDF

    Photooxidation of Polymeric-inorganic nanocomposites: Chemical, Thermal Stability and Fire Retardancy Investigations

    Get PDF
    Nanocomposites of polypropylene-graft-maleic anhydride/clay and polypropylene/clay were prepared by melt blending using two different approaches. X-Ray diffraction results showed an intercalated structure. Samples of nanocomposites were exposed to UV light under atmospheric oxygen and their photo-oxidative stability was studied using FTIR and UV spectroscopy. The consequences of this photo-oxidation on the thermal stability and fire retardant performance of the nanocomposites were also addressed from thermogravimetry analysis and Cone calorimetry

    Study on Intumescent Flame Retarded Polystyrene Composites with Improved Flame Retardancy

    Get PDF
    The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter

    Thermal Properties of Thermoplastics

    Get PDF

    In situ reactive blending to prepare polystyrene-clay and polypropylene-clay nanocomposites

    Get PDF
    Nanocomposites of polystyrene and polypropylene with organically-modified clay may be prepared by melt blending in a Brabender mixer the clay and the polymer. The presence of maleic anhydride increases the likelihood of nanocomposite formation for polystyrene but is less important for polypropylene. The materials that result are immiscible materials, in that the clay is not uniformly distributed throughout the polymer matrix, but there is polymer inserted between the clay layers. The results from cone calorimetry suggest that nanocomposite formation has occurred, since there is a significant reduction in the peak heat release rate

    Investigation of the Thermal Degradation of Polyurea: The Effect of Ammonium Polyphosphate and Expandable Graphite

    Get PDF
    Polyurea was compounded with ammonium polyphosphate and expandable graphite and the morphology was studied by atomic force microscopy. The thermal degradation of polyurea and polyurea compounded with the additives has been investigated using thermogravimetry coupled with Fourier Transform infrared spectroscopy and mass spectrometry. The study of the thermal degradation and the parameters affecting the thermal stability of PU is essential in order to effectively design flame retarded polyurea. In general, thermal decomposition of polyurea occurs in two steps assigned to the degradation of the hard segment and soft segment, respectively. Adding these additives accelerates the decomposition reaction of polyurea. However, it is clear that more char is formed. This char is thermally more stable than the carbonaceous structure obtained from neat PU. The intumescent shield traps the polymer fragments and limits the evolution of small flammable molecules that are able to feed the flame

    A Stibonium-Modified Clay and its Polystyrene Nanocomposite

    Get PDF
    Triphenylhexadecylstibonium trifluoromethylsulfonate has been prepared and ion-exchanged with sodium montmorillonite to obtain a new organically-modified clay. The clay has higher thermal stability than an ammonium clay; only a portion of the alkyl chain is lost during degradation and all of the antimony is retained. This clay has been used to prepare a polystyrene nanocomposite in which the clay is not uniformly distributed throughout the polymer. Nonetheless the polymer does insert into the clay layers and the d-spacing of the clay expands from 2.0 to 3.0 nm. The enhanced thermal stability of this system may mean that it could be useful for polymers which must be processed at temperatures above that at which the ammonium clays undergo degradation

    Synergistic Effect of Carbon Nanotubes and Decabromodiphenyl Oxide/Sb\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e in Improving the Flame Retardancy of Polystyrene

    Get PDF
    Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released

    How does Cross-Linking Effect the Thermal Stability of Polyisoprene

    Get PDF
    Polyisoprene can be cross-linked by an initial lithiation followed by reaction with both monochloro compounds and dichloro compounds. The monochloro compounds effect crosslinking through a lithium-chlorine exchange route while the use of dichloro compounds links the PIP chains with the spacer between the two chlorine atoms. A significant amount of char is produced from compounds which have been cross-linked with aromatic dihalides while aliphatic dihalides do not produce significant char
    • …
    corecore